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Classification of microtubule histories
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A microtubule of a given length undergoes all possible scenarios of transitions between growing and
shrinking phases, so-called microtubule dynamic instability. In this paper we utilize a minimal two-state model
proposed by Hill@Proc. Natl. Acad. Sci. USA81, 6728~1984!# that is equivalent to a two-state random walk.
Using a technique for classifying discrete random walk configurations by introducing a counting variable in
evolution equations, we have derived expressions for probability densities~which contain information about all
transition histories! of phase transitions before the complete disappearance of a microtubule. As a result, the
mean lifetime of a microtubule turns out to be equal to the total lifetime of growing and shrinking phases times
the average number of transitions. An attractive feature of this simple model is that elementary formulas
relating statistical averages to rate parameters are obtained.
@S1063-651X~99!02001-2#

PACS number~s!: 87.10.1e, 02.50.Ey, 05.40.Fb, 05.65.1b
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I. INTRODUCTION

Microtubules~MTs! are rigid, hollow, 25-nm-diam cylin-
drical polymers of tubulinab heterodimers. Each dime
which is roughly 5 nm in diameter and 8 nm long, is
100-kDa tightly bound elongated complex formed fro
closely relateda- and b-tubulin subunits. The cylindrica
wall of the MT is composed typically of 13 protofilaments
tubulin dimers arranged head to tail in each filament a
with all filaments having the same polarity. Thus one end
a MT has a crown ofa-tubulin subunits while the other en
has a crown ofb-tubulin subunits. A 13-protofilament MT
contains about 1625 tubulin subunits per micrometer.

On the basis of anin vitro study of a population of MTs a
steady state, Mitchison and Kirschner@1# proposed that MT
ends have the ability to alternate between persistent ph
of growth and shortening. They termed this unusual beha
‘‘dynamic instability.’’ Subsequently, the phenomenon
dynamic instability was observed directlyin vitro, in real
time, using video-enhanced microscopy@2–4#. In the latter
studies it was observed that under steady-state condit
two populations of MTs coexist: a majority populatio
which elongates at a well-defined rate, and a minority po
lation, which shortens at a significantly faster rate. Tran
tions from the growing phase to the shrinking phase
termed ‘‘catastrophes’’ and transitions from the shrinki
phase to the growing phase are termed ‘‘rescues.’’ The t
sitions between the two phases occur rarely, but in a rand
or stochastic manner. Thus there are four parameters
characterize the observed behavior: the elongation
shrinking ratesv1 andv2 , respectively, and the catastroph
and rescue ratesf 1 and f 2 , respectively. Since MTs have
polar character, the rates observed at opposite ends a
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general different. Typical elongation and shortening rates
observed to be 2 and 27mm/min, respectively@4,5#, at a
guanosine triphosphate~GTP! tubulin concentration of 10
mM. These rates of length change correspond to the g
~loss! of 54 ~730! dimers/sec, assuming 13-protofilame
MTs and a tubulin dimer length of 8 nm. Typical catastrop
and rescue rates are observed to be 0.2 and 2.0 min21.

In all the above experiments, MTs exhibit dynamic ins
bility in the presence of tubulin dimers to which GTP
bound. Mitchison and Kirschner@1# suggested that after th
GTP tubulin is incorporated into an elongating MT, the GT
is subsequently hydrolyzed to guanosine diphosphate~GDP!.
Thus the main body of the MT consists of a GDP-tubu
lattice with a stabilizing cap~or tip! of GTP tubulin. If the
hydrolysis reaction overtakes the addition of GTP tubul
the stabilizing cap is lost and a catastrophe occurs, i.e.,
MT enters a shrinking phase. The exact nature and exten
a GTP-tubulin cap still remains a subject of intense stu
See the recent paper by Flyvbjerget al. @6#, who suggest a
different model of the competition between the addition
GTP tubulin at the growing tip and the hydrolysis of GT
tubulin in the MT body. This paper@6# also contains refer-
ences to numerous experimental investigations of the
namic instability of MTs. Other more general studies of t
cap model have involved Monte Carlo simulations of 1
protofilament MTs, by Chen and Hill@7# and later by Bayley
et al. @8#. Taking a different tack~using probabilistic and
spectral analysis!, Oddeet al. @9# have analyzed the exper
mentally observed distribution of elongation times and fou
small departures from the exponential distribution of t
two-state model. Although the approach developed in t
paper is applicable to a multistate model, here we investig
MT histories for the two-state model because simple ex
formulas relating statistical averages to rate parameters o
two-state model can be obtained. These results are a u
first approximation for more elaborate multistate models a
have intrinsic interest in their own right. In addition,in vitro
studies, which bear on the cap model, are summarized
reviews@10–12#. In most of these studies the rates of elo
913 ©1999 The American Physical Society
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914 PRE 59D. J. BICOUT AND R. J. RUBIN
gation and shortening as well as the lifetimes of the elong
ing and shortening phases were measured as a functio
GTP-tubulin concentration. The elongation rate is expec
to be proportional to the GTP-tubulin concentration. There
a critical valueCcr of the GTP-tubulin concentration@4,5#
such that for higher concentrations the average length
population of MTs increases proportional to the time, wh
for concentrations less thanCcr the average length decreas
with time. If nucleating sites for MT assembly are present
the latter case, a stable population of MTs will be maintain
as long as the concentration of GTP tubulin is maintaine

Two related minimal two-state models of dynamic ins
bility that depend upon the four parametersv1 , v2 , f 1 , and
f 2 have been proposed and studied extensively. One, in
duced by Hill@13#, is an example of a continuous time two
state biased random walk in a discrete length space@14# and
the other, introduced by Dogterom and Leibler@15#, is the
continuous length space analog of the Hill model. In the
models,C,Ccr (C.Ccr) is equivalent, in terms of the fou
rate parameters, tov1 f 2,v2 f 1 (v1 f 2.v2 f 1). For the
casev1 f 2,v2 f 1 , Hill @13# determined that the steady
state fractional population of MTs in either of the two phas
is a decreasing exponential function of MT length. Ver
et al. @16# reached the same conclusion for the Hill mod
and Dogterom and Leibler obtained a similar result@15#.
Rubin @17# for the Hill model and Bicout@18# for the
Dogterom-Leibler model calculated the mean first-pass
time to zero length of either an elongating or a shrinki
MT. The results for the two different models are, for a
practical purposes, identical.

In either model, the governing equations correspond t
biased two-state random walk in which the drift decrea
~increases! the length @14,19# for v1 f 2,v2 f 1 (v1 f 2

.v2 f 1) @18#. Our principal interest in this paper is in ca
culating for the two-state model the average number of tr
sitions for a MT of given length and phase before the M
reaches zero length for the first time. In addition, we cal
late from the probability density of reaching zero length
the first time at timet the probability density of MTs tha
have maden transitions into the shrinking state at the time
their disappearance. We will use the Dogterom-Leib
model in our calculations and merely note that the results
not differ significantly from those obtained for the Hi
model. In Sec. II we outline a method for counting tran
tions between states in the Dogterom-Leibler model. T
method, which generalizes to the continuum a technique
classifying discrete lattice random walk configurations
cording to the number of visits of each configuration to
selected set of lattice sites@20,21#, consists in introducing a
counting variable in the evolution equations. Then we cal
late the lifetime distribution of a MT of given length an
phase as a function of the counting variable. These distr
tions are then generating functions in the counting varia
that contain information about all transition histories of
MT. In Sec. III we exploit these generating functions to c
culate the probability densities of MT phase changes be
complete disassembly, the average number of phase cha
and fluctuations about the average. The relation betw
these quantities and the mean lifetime of a MT before dis
pearance is established in Sec. IV. Finally, a summary
results is given in Sec. V.
t-
of
d
s

a

d

-

o-

e

s

l

e

a
s

-

-
r

r
o

-
e
or
-

-

u-
le

-
re
es,

en
-
f

II. LIFETIME DISTRIBUTIONS OF A MICROTUBULE

Let P1(x,t) and P2(x,t) be the probability density dis
tributions of finding at timet a MT with the lengthx in state
1 and2, respectively. These distributions satisfy the diffe
ential equations

]P1

]t
52v1

]P1

]x
2 f 1 P1 1 f 2 P2 , ~2.1a!

]P2

]t
5v2

]P2

]x
1y f1 P1 2 f 2 P2 , ~2.1b!

with the initial condition

P2~x,0!5~12a! d~x2x0!, P1~x,0!5a d~x2x0! .
~2.1c!

We treat the nucleating site as an absorbing point and m
the complete disassembly of a MT by requiring that

P1~x,t !50 if x50. ~2.2!

To account for passages of a MT through the shrink
phase, a counting variabley (0,y<1) has been introduced
in Eq. ~2.1b!. By inserting y, one can keep track of the
number of different transition histories from the1 to 2
state. Since MTs disappear only from the shrinking pha
the quantity of interest for a MT initially in the growing
phase is the number of passes into the shrinking phase.

For a MT initially of lengthx0 in either the growing or the
shrinking phase, changes in length are governed by E
~2.1a! and ~2.1b!. The size-time history of a MT, i.e., al
possible scenarios of transitions between the growing
shrinking phases until complete disassembly, is encompa
in these equations. For the classification of MT histories
cording to the number of passages into the shrinking ph
we are interested in the lifetime distribution of a MT, i.e., t
probability density per unit of time that the MT of lengt
x0.0 in state1 or 2 completely disassembles to zero f
the first time att. This lifetime distribution is given by the
flux v2P2(0,t) of MTs reaching the nucleating site. A
noted in Sec. I, two regimes of MT behavior can be dist
guished depending upon whether the rate constants sa
the condition v1 f 2,v2 f 1 ~drift decreases length! or
v1 f 2.v2 f 1 ~drift increases length!. An equivalent repre-
sentation of these inequalities can be formed from the rate
of the average growth step lengthv1 / f 1 to the average
shrinking step lengthv2 / f 2 defined as

e5
v1 f 2

v2 f 1
. ~2.3!

When e,1, all MTs eventually shrink to zero, while fore
.1, the fraction of MTs that shrink to zero is less than on
In this case the fluxv2P2(0,t) is proportional to the prob-
ability density distribution of MT lifetimes conditioned o
reaching the nucleating site. Although the MT history of th
fraction can be studied, the remainder of this paper will d
only with the regimee,1 in which MTs have a steady-stat
length @13,15,18# given by
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1

l
5

f 1

v1
2

f 2

v2
⇒ l 5

v1v2

v2 f 12v1 f 2
. ~2.4!

In this latter case, all MTs will shrink to zero fast enough
that the lifetime probability distribution is normalized@22#

E
0

`

v2P2~0,t ! dt51 . ~2.5!

Denoting by F1(tux0 ;y) and F2(tux0 ;y) the respective
probability density distributions of MT lifetimes starting a
x0.0 in states1 ~i.e., a51) and2 ~i.e., a50), we then
have

F1~ tux0 ;y!5v2P2~0,t ! for a51 , ~2.6a!

F2~ tux0 ;y!5v2P2~0,t ! for a50 . ~2.6b!

In our calculations, we only need the Laplace transfor
of F1(tux0 ;y) andF2(tux0 ;y) and in the remaining section
of the paper we will omit the subscript zero onx. The
Laplace transform solution of Eqs.~2.1a! and ~2.1b! with
boundary condition~2.2! is given in Appendix A. It follows
from the Laplace transform expression ofv2P2(0,t) given
in Eq. ~A8! that

F̂2~sux;y!5e2l~s,y! x , ~2.7a!

F̂1~sux;y!5Fs1 f 22v2l~s,y!

y f2
G e2l~s,y! x

5g~s,y! F̂2~sux;y! , ~2.7b!

wherel(s,y) is given by

l~s,y!5
@v1 f 22v2 f 11~v12v2!s#

2v1v2

1H F @v1 f 22v2 f 11~v12v2!s#

2v1v2
G2

1
s~s1 f 11 f 2!1~12y! f 1 f 2

v1v2
J 1/2

. ~2.8!

Note that by settingy51, Eqs.~2.7b! and ~2.7a! reduce to
the expressions previously obtained by Bicout@18#.

III. STATISTICS OF TRANSITION HISTORIES

By inserting the counting variabley in the MT evolution
equation~2.1b!, F̂1(sux;y) and F̂2(sux;y) become generat
ing functions in the variabley that contain information abou
the set of all possible transition histories of a MT.

A. Probability distribution of transits into the shrinking phase

Consider the expansion ofF̂1(sux;y) and F̂2(sux;y) in
powers ofy at s50,

F̂6~0ux;y!5 (
n50

`

Vn
6~x! yn . ~3.1!
s

Vn
6(x) is the probability that a MT initially atx in the grow-

ing ~1! or shrinking~2! phase disappears to the nucleati
site after having passed exactlyn times into the shrinking
state. If the MT starts in the shrinking state and disappe
without ever entering the growing phase,n50. It follows
from Eq. ~3.1! that the sums overn of the probabilities
Vn

2(x) and Vn
1(x) are normalized to one sinceF̂6(0ux;1)

51 and the individual probabilities are given by the expre
sion

Vn
6~x!5

1

n!

]nF̂6~0ux;y!

]yn U
y50

. ~3.2!

For a MT initially in the 2 state, the probabilitiesV0
2(x)

andV1
2(x) obtained from Eq.~2.7a! are

V0
2~x!5expH 2

f 2

v2
xJ , ~3.3a!

V1
2~x!5S 1

11e D f 2x

v2
expH 2

f 2

v2
xJ . ~3.3b!

Similarly, the probabilitiesV0
1(x) andV1

1(x) are

V0
1~x!5S 1

11e D expH 2
f 2

v2
xJ , ~3.4a!

V1
1~x!5

e

~11e!3 F11S 11e

e D f 2x

v2
G expH 2

f 2

v2
xJ ,

~3.4b!

where e is defined in Eq.~2.3!. General expressions fo
Vn

6(x) are given in Appendix B. Sincee,1, these prob-
abilities decrease as the numbern of transitions into the
shrinking phase gets larger and, in addition, they fall
exponentially on the scale of the average shrinking s
lengthv2 / f 2 .

On the other hand,Vn
1(0) is given by

Vn
1~0!5

en

~11e!2n11
cn , cn5

1

n11 S 2n

n D , ~3.5!

where cn is the Catalan number.Vn
1(0) is the probability

that a newly nucleated MT completely disassembles aften
passages into the shrinking state. As can be seen from T
I, depending one the new MT is most likely to disappea
after having made one phase change1→2. This general
trend holds as well for any MT length. Indeed, whenx5 l
~the steady-state length! ande50.1, for example, the prob
abilities of disappearance areVn

1( l )50.813,0.151,0.029 and
Vn

2( l )50.895,0.090,0.005 forn50,1,2. This supports the
experimental observation of catastrophe events in which
length of a MT suddenly shrinks to zero in a single run.

B. Average number of transits into the shrinking phase and
fluctuations

Another quantity that is accessible and relevant to the
history of a MT is the average number of transitions into t
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916 PRE 59D. J. BICOUT AND R. J. RUBIN
shrinking state executed before disappearance. This ave
number^n6(x)&, which is a function of starting MT length
x, can be easily obtained from

^n6~x!&5 (
n50

`

n Vn
6~x!5

]F̂6~0ux;y!

]y U
y51

. ~3.6!

Differentiating Eq.~2.7a! and ~2.7b! with respect toy and
settingy51, we find

^n1~x!& 2 ^n1~0!&5^n2~x!&5S 1

12e D f 2x

v2
, ~3.7!

where ^n1(0)&, the average number of passes through
shrinking state experienced by a newly nucleated MT bef
disappearance, is

^n1~0!&5
e

12e
. ~3.8!

This shows that̂n1(0)& is smaller than, equal to, or great
than one fore smaller than, equal to, or greater than1

2, re-
spectively, consistent with the data of Table I. For examp
^n1(0)&50.11, 1, 19 fore50.1, 0.5, 0.95.

Another informative quantity for the MT dynamics is th
variance of the number of transitions into the shrinking st
^Dn6

2 (x)&5^n6
2 (x)&2^n6(x)&2. This can be obtained by

using the relation

^@n6~x!#2&2^n6~x!&5 (
n50

`

n~n21! Vn
6~x!

5
]2F̂6~0ux;y!

]y2 U
y51

. ~3.9!

Combining this with Eq.~3.7!, one can show that the fluc
tuation in the number of cycles is given by

TABLE I. Probability of disappearance aftern cycles of a newly
nucleated MT for different values ofe.

Vn
1(0)

n e50.1 e50.5

0 0.90909 0.6667
1 0.07510 0.1482
2 0.01240 0.0658
3 0.00257 0.0366
4 0.00059 0.0228
5 0.00015 0.0152
ge

e
e

,

e

^Dn1
2 ~x!&2^Dn1

2 ~0!&

@^n1~x!& 2 ^n1~0!&#2

5
^Dn2

2 ~x!&

@^n2~x!&#2
5

2^n1~0!&212^n1~0!&11

^n2~x!&
~3.10a!

5S 11e2

12e D v2

f 2x
~3.10b!

and

^Dn1
2 ~0!&

@^n1~0!&#2
5

22e1e2

e ~12e!
. ~3.11!

For x fixed the fluctuation in the number of cycles diverges
e51, as it would be expected for a symmetric on
dimensional random walk with an absorbing boundary. T
standard deviation of the number of transitions is compara
to the average number of transitions forx;v2 / f 2 and e
@1 or for x; l ande close to one, both numbers diverging
the threshold.

IV. MEAN LIFETIMES

As an application of the above analysis, we calculate
mean lifetime of a MT that has cycled exactlyn times into
the shrinking phase. To proceed, we denote byt1(x)
@t2(x)# the mean lifetime of a MT given that it was initially
in the growing@shrinking# phase with the lengthx. Using the
formalism developed by Rubin@17#, these times can be ex
pressed as

t6~x!52
]F̂6~sux;y!

]s
U

s50,y51

5 lim
y→1

(
n50

`

Vn
6~x! tn

6~x! yn , ~4.1!

wheretn
1(x) @tn

2(x)# is the mean lifetime of a MT that ha
transitedn times from1 to 2 when starting in the1 @2#
state. It immediately follows from Eq.~4.1! that tn

6(x) can
be derived from the relation

Vn
6~x! tn

6~x!52
1

n!

]n11F̂6~sux;y!

]s]yn U
s50,y50

. ~4.2!

Substituting Eqs.~2.7a! and ~2.7b! in Eq. ~4.2! and then us-
ing Eqs.~3.3a!, ~3.3b!, ~3.4a!, and~3.4b!, we have~see Ap-
pendix C!

t0
2~x!5

x

v2
, ~4.3a!

t1
2~x!5t0

2~x! 1
1

k11k2
, ~4.3b!

t0
1~x!5t1

2~x! , ~4.3c!
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t1
1~x!5t0

1~x! 1
1

k11k2
H 11F11S 11e

e D f 2x

v2
G21J ,

~4.3d!

in which the ratesk6 defined as

k15
v2 f 1

v11v2
, k25

v1 f 2

v11v2
~4.4!

can be regarded as the apparent catastrophe and rescue
It appears thattn

6(x) consists of two contributions: first
ballistic termx/v2 that accounts for shrinking propagatio
without any phase changes, and second a term that con
all information on cycle events and represents the diffus
aspect of MT evolution. Note in addition that atx50 only
the ‘‘diffusive’’ contribution is physically relevant:

tn
1~0!5

2n11

k11k2
. ~4.5!

Settingy51 in Eqs.~2.7a! and~2.7b!, differentiating the
resulting expressions with respect tos, and taking thes
→0 limit, we find that the mean lifetimes of a MT are give
by @17,18#

^t1~x!&2^t1~0!&

5^t2~x!&5S 1

f 1
1

1

f 2
D f 2x

~12e! v2
~4.6a!

5S 1

f 1
1

1

f 2
D ^n2~x!& ,

~4.6b!

wheref 1
211 f 2

21 is the typical duration of a cycle of succe
sive phase changes and^n2(x)&, given in Eq.~3.7!, is the
average number of transitions into the shrinking state
ecuted by a MT before complete disassembly to the nucl
ing site. The mean lifetime for a newly nucleated MT is

^t1~0!&5S e

12e D 1

k2
5

^n1~0!&
k2

. ~4.7!

Similarly, denoting the variance of the mean lifetimes
^Dt6

2 (x)&5^t6
2 (x)&2^t6(x)&2, one can also relate the fluc

tuations of the mean lifetimes to the fluctuations in the nu
ber of phase changes given in Eq.~3.10b! as

^Dt1
2 ~x!&2^Dt1

2 ~0!&

@^t1~x!& 2 ^t1~0!&#2

5
^Dt2

2 ~x!&

@^t2~x!&#2
5

2~11e!2

~12e!

v2

f 2x
~4.8a!

5S 2 ~11e!2

11e2 D ^Dn2
2 ~x!&

@^n2~x!&#2
.

~4.8b!

Equations~4.6b! and~4.8b! establish the one to one relation
ship between the statistics of phase changes and that of
ates.

ins
e

-
t-

-

fe-

times. Therefore, all remarks made about the number
phase changes apply as well to the MT lifetime.

V. SUMMARY

The evolution equations describing the dynamic behav
of MTs are an example of a biased two-state random w
with an absorbing boundary. Consequently, in the interes
case where the bias, or drift, is directed toward zero len
~i.e., the location of the absorbing boundary!, MTs have a
finite lifetime before absorption. By generalizing a procedu
used to classify discrete random walks@20,21# according to
their histories, we have introduced a counting variabley in
the MT evolution equation~2.1b!. These equations encom
pass all possible transition histories of a MT before its d
appearance. With the variabley, one can classify MT histo-
ries according to the number of transits into the shrink
phase prior to absorption. The solution of the generaliz
evolution equations can then be regarded as a genera
function for quantities such as~i! the probability of transiting
exactly n times into the shrinking phase before absorpti
Vn

6(x) in Eqs.~3.2!, ~B1!, and~B6!; ~ii ! the mean number o
transits into the shrinking phase before absorption^n6(x)&
in Eqs. ~3.6!–~3.8!; and ~iii ! the mean lifetime of MTs that
have undergone exactlyn transits before disappearanc
tn

6(x) in Eqs. ~4.1!, ~C3!, and ~C4!. All of these can be
computed directly from the time recording of a single M
length. Indeed, the time evolution of a MT length exhibits
sawtooth profile where peaks are formed by the alterna
of growing and shrinking phases. The number of peaks
identically equal to the numbern of times the MT enters the
shrinking phase, i.e., the number of times the MT underg
catastrophic events. Therefore,^n6(x)& and Vn

6(x) can be
obtained by simply counting and binning the number
peaks before complete disassembly of the MT and avera
over many realizations andtn

6(x) represents the averag
elapsed time taken for the MT to collapse to zero length a
having entered the shrinking phasen times.

All the intimate details of MT historiesVn
6(x), ^n6(x)&,

andtn
6(x) discussed in previous sections depend on the

tial length x of the MT. However, in applications one i
interested in properties of the system prepared with an in
distribution of MT lengths that coincides with the stead
state distribution. Indeed, it has been shown@13,15,18# that
for e,1, there is a steady-state average length@Eq. ~2.4!# for
MTs. That is, in an ensemble of MTs at steady state, if M
are renucleated when they reach zero length, the approp
boundary condition for the evolution equations~2.1a! and
~2.1b! is v1P1(0,t)5v2P2(0,t). Under the above condi
tions, it can be verified by direct substitution that the tim
independent or steady-state solutions of Eqs.~2.1a! and
~2.1b! have the exponential forms

peq
1~x!5S v2

v11v2
D e2x/ l

l
,

~5.1!

peq
2~x!5S v1

v11v2
D e2x/ l

l
.

In such an ensemble, all MT lengthsx and states6 are
present with the statistical weightspeq

1(x) andpeq
2(x). These



e

th

or

e
b
n

in
th

918 PRE 59D. J. BICOUT AND R. J. RUBIN
weights can be used to calculate the ensemble averag
Vn

6(x), ^n6(x)&, and tn
6(x). For illustration, we just give

the ensemble average of the number of transits into
shrinking phase before disappearance

^n&eq5E
0

`

^n1~x!& peq
1~x! dx

1 E
0

`

^n2~x!& peq
2~x! dx

5
e

12e F 1

12e
1

v2

v11v2
G ~5.2!

and the ensemble average of the lifetime of a MT bef
complete disassembly

^t&eq5E
0

`

^t1~x!& peq
1~x! dx

1 E
0

`

^t2~x!& peq
2~x! dx

5S 1

f 1
1

1

f 2
D ^n&eq1 S v2

v11v2
D 1

f 1
. ~5.3!

It follows that the average lifetime is equal to the total tim
of growing and shrinking phases times the average num
of transitions, plus a noncycling contribution that is the e
semble averaged lifetime of newly nucleated MTs hav
transited only once into the shrinking phase to zero leng
te
ve
of

e

e

er
-
g
.
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APPENDIX A: DERIVATION OF THE EXPRESSION OF
P̂2„X,S…

Defining the Laplace Fourier transform as

P̂̃6~k,s!5E
0

`

dxE
0

`

dt eikx2st P6~x,t ! ,

5E
0

`

dt e2st P̃6~k,t ! ,

5E
0

`

dx eikx P̂6~x,s! , ~A1!

Eqs.~2.1a! and ~2.1b! can be transformed into

~s1 f 12 ikv1! P̂̃1 2 f 2 P̂̃25a eikx0,

y f1 P̂̃1 2 ~s1 f 21 ikv2! P̂̃2

52~12a! eikx0 1 v2P̂2~0,s!,

~A2!

in which we have used the initial condition in Eq.~2.1c!, the
absorbing boundary conditionP̂1(0,s)50, and the fact that

P6(`,t)50. For instance,P̂̃2(k,s) can be obtained from
Eq. ~A2! as
P̂̃2~k,s!5

Us1 f 12 ikv1 a eikx0

y f1 2~12a! eikx0 1 v2P̂2~0,s!
U

Us1 f 12 ikv1 2 f 2

y f1 2~s1 f 21 ikv2!
U

5
~s1 f 12 ikv1!v2P̂2~0,s!

v1v2 ~ ik2l1! ~ ik1l2!
2

@~12a!~s1 f 12 ikv1!1ay f1#

v1v2 ~ ik2l1! ~ ik1l2!
eikx0 , ~A3!
of
where the rootsl1 andl2 are given by

l1

l2
J 57

@v1 f 22v2 f 11~v12v2!s#

2v1v2

1 H F @v1 f 22v2 f 11~v12v2!s#

2v1v2
G2

1
s~s1 f 11 f 2!1~12y! f 1 f 2

v1v2
J 1/2

. ~A4!

In the argument of the square root ofl1,2, the counting
variable is assumed to be less than one, although ultima
the limit y→1 is taken. Therefore, that argument is positi
ly

for real s.0. Moreover, in our case of interestv1 f 2

2v2 f 1,0, we thus havel1.0 andl2>0. Let us invert

the Fourier transform ofP̂̃2(k,s),

P̂2~x,s!5
1

2pE2`

`

e2 ikx P̂̃2~k,s! dk . ~A5!

In evaluating the transform by contour integration, closure
the contour containing the terme2 ikx is clockwise around
2 il1, while for the term containingeik(x02x) closure is
clockwise around2 il1 for x.x0 and counterclockwise
aroundil2 for x,x0. The result is
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P̂2~x,s!52
~s1 f 12v1l1!v2P̂2~0,s!

v1v2 ~l11l2!
e2l1x

1
@~12a!~s1 f 1!1ay f1#

v1v2 ~l11l2!
e2l2~x02x!

1
~12a!l2

v2 ~l11l2!
H~x02x! e2l2~x02x!,

x<x0 , ~A6a!

P̂2~x,s!52
~s1 f 12v1l1!v2P̂2~0,s!

v1v2 ~l11l2!
e2l1x

1
@~12a!~s1 f 1!1ay f1#

v1v2 ~l11l2!
e2l1~x2x0!

2
~12a!l1

v2 ~l11l2!
H~x2x0! e2l1~x2x0!,

x>x0, ~A6b!

whereH(x) is the Heaviside step function defined asH(x)
51 for x.0 and H(x)50 for x,0. The expression for
P̂1(x,s) can as well be derived using the same method.

We now focus on the casex,x0. Setx50 in Eq. ~A6a!

and solve the resulting equation forP̂2(0,s). Using the re-
lation

y f1

s1 f 11v1l2
5

s1 f 22v2l2

f 2
, ~A7!

we finally obtain

v2P̂2~0,s!5Fa ~s1 f 22v2l2!

y f2
1 ~12a!G e2l2x0 .

~A8!

APPENDIX B: GENERAL EXPRESSIONS FOR Vn
6
„x…

By differentiating Eq.~2.7a! n times with respect toy and
using Eq.~2.3! in the resulting expressions, we find that t
probability ofn transitions for a MT initially in the shrinking
phase is, forn>1,

Vn
2~x!5

en

~11e!2n
expH 2

f 2

v2
xJ

3 (
k51

n
~2n2k21!!

n! ~k21!! ~n2k!! F S 11e

e D f 2x

v2
Gk

.

~B1!

The structure of Eq.~2.7b! suggests expressingVn
1(x) in

terms ofVn
2(x). We have

Vn
1~x!5

1

n! (
k50

n S n

kD F ]kg~0,y!

]yk

]n2kF̂2~0ux;y!

]yn2k GU
y50

5 (
k50

n
Vn2k

2 ~x!

k! F ]kg~0,y!

]yk GU
y50

. ~B2!

The remaining derivative can be easily evaluated to give

Vn
1~x!5 (

k50

n

Vk
1~0! Vn2k

2 ~x! , ~B3!

whereVn
1(0) is given in Eq.~3.5!. However, it is possible to

work out a general formula forVn
1(x). Substitute Eqs.~B1!

and ~3.5! into Eq. ~B3! and obtain

Vn
1~x!5

en

~11e!2n11
expH 2

f 2

v2
xJ H ~2n!!

n! ~n11!!

1 (
k50

n21
~2k!!

k! ~k11!! ~n2k!!

3 (
i 51

n2k
~2n22k2 i 21!!

~ i 21!! ~n2k2 i !! F S 11e

e D f 2x

v2
G i J .

~B4!

Next, using in this expression the identity
(
k50

n21
~2k!!

k! ~k11!! ~n2k!! (i 51

n2k
~2n22k2 i 21!!

~ i 21!! ~n2k2 i !!
Zi1

~2n!!

n! ~n11!!
5 (

k50

n
~k11! ~2n2k!

! ~n11!!k! ~n2k!!
Zk , ~B5!
we finally find

Vn
1~x!5

en

~11e!2n11
expH 2

f 2

v2
xJ

3 (
k50

n
~k11! ~2n2k!!

~n11!! k! ~n2k!! F S 11e

e D f 2x

v2
Gk

.

~B6!
Note that similar expressions, i.e., Eqs.~B1! and~B6! for the
number of phase changes, were also obtained by Hill@13#
using a different method.

APPENDIX C: GENERAL EXPRESSIONS FOR tn
6
„x…

Differentiating Eq.~2.7a! once with respect tos and n
times with respect toy and settings5y50, we have
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Vn
2~x! tn

2~x!5
x

v2
Vn

2~x! 1 S 1

k11k2
D

3F 2 f 2x

~11e! v2
Gn

expH 2
f 2x

v2
J

3 (
k50

n21
~n1k! ~n1k21!!

n!k! ~n2k21!! F S 11e

e D f 2x

v2
G2k

.

~C1!

On the other hand, one can show by recurrence, for exam
that for ZÞ0

(
k50

n21
~n1k! ~n1k21!!

k! ~n2k21!!
Z2k

5 (
k51

n

~21!n1k ~2k21!(
i 50

k21
~k1 i 21!!

i ! ~k2 i 21!!
Z2 i ,

5 (
k51

n

~21!n1k ~2k21!(
i 51

k
~2k2 i 21!!

~ i 21!! ~k2 i !!
Zi 2k . ~C2!
.

is,

o-
le,

Using this relation and Eq.~B1! in Eq. ~C1!, we find

tn
2~x!5

x

v2
1 S 1

k11k2
D (

k51

n

~2k21!

3F k! Vk
2~x!

n! Vn
2~x!

G F 2 f 2x

~11e! v2
Gn2k

. ~C3!

Similarly, the differentiation of Eq.~2.7b! once with respect
to s and n times with respect toy and identifying factors
related to the shrinking phase, one can expresstn

1(x) in
terms oftn

2(x) andVn
6(x) as

tn
1~x!5 (

k50

n
Vk

1~0! Vn2k
2 ~x!

Vn
1~x!

@tk11
2 ~0!1tn2k

2 ~x!# .

~C4!
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