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Classification of microtubule histories
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A microtubule of a given length undergoes all possible scenarios of transitions between growing and
shrinking phases, so-called microtubule dynamic instability. In this paper we utilize a minimal two-state model
proposed by Hil[Proc. Natl. Acad. Sci. USB1, 6728(1984] that is equivalent to a two-state random walk.
Using a technique for classifying discrete random walk configurations by introducing a counting variable in
evolution equations, we have derived expressions for probability densitiesh contain information about all
transition historiesof phase transitions before the complete disappearance of a microtubule. As a result, the
mean lifetime of a microtubule turns out to be equal to the total lifetime of growing and shrinking phases times
the average number of transitions. An attractive feature of this simple model is that elementary formulas
relating statistical averages to rate parameters are obtained.
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PACS numbgs): 87.10:+e, 02.50.Ey, 05.40.Fb, 05.66b

I. INTRODUCTION general different. Typical elongation and shortening rates are
observed to be 2 and 2#m/min, respectively{4,5], at a

Microtubules(MTs) are rigid, hollow, 25-nm-diam cylin- guanosine triphosphaté€TP) tubulin concentration of 10
drical polymers of tubulinaB heterodimers. Each dimer, uM. These rates of length change correspond to the gain
which is roughly 5 nm in diameter and 8 nm long, is a(losg of 54 (730) dimers/sec, assuming 13-protofilament
100-kDa tightly bound elongated complex formed fromMTs and a tubulin dimer length of 8 nm. Typical catastrophe
closely relateda- and B-tubulin subunits. The cylindrical and rescue rates are observed to be 0.2 and 2.0'min
wall of the MT is composed typically of 13 protofilaments of ~ In all the above experiments, MTs exhibit dynamic insta-
tubulin dimers arranged head to tail in each filament andility in the presence of tubulin dimers to which GTP is
with all filaments having the same polarity. Thus one end ofound. Mitchison and Kirschn¢fl] suggested that after the
a MT has a crown ofr-tubulin subunits while the other end GTP tubulin'is incorporated into an elongating MT, the GTP
has a crown of3-tubulin subunits. A 13-protofilament MT IS Subsequently hydrolyzed to guanosine diphospt@RP).
contains about 1625 tubulin subunits per micrometer. Thus the main body of the MT consists of a GDP-tubulin

On the basis of aimn vitro study of a population of MTs at lattice W'_th a stgb|l|zmg cayfor tip) of GTP tubulin. If the :
steady state, Mitchison and Kirschridil proposed that MT hydrolysis reaction overtakes the addition of GTP tubulin,

ends have the ability to alternate between persistent phas%%? stabilizing cap is lost and a catastrophe occurs, i.e., the

of growth and shortening. They termed this unusual behavior enters a'shrmkmg. phase.' The exagt naturg and extent of
o . e a GTP-tubulin cap still remains a subject of intense study.
dynamic instability.” Subsequently, the phenomenon of

dynamic instability was observed directlg vitro, in real See the recent paper by Flyvbjeegal. [6], who suggest a

. . . . different model of the competition between the addition of
time, using video-enhanced microscof~4]. In the latter  G1p ypylin at the growing tip and the hydrolysis of GTP

studies it was observed that under steady-state conditiongpyiin in the MT body. This papdi6] also contains refer-
two populations of MTs coexist: a majority population, ences to numerous experimental investigations of the dy-
which elongates at a well-defined rate, and a minority popunamic instability of MTs. Other more general studies of the
lation, which shortens at a significantly faster rate. Transizap model have involved Monte Carlo simulations of 13-
tions from the growing phase to the shrinking phase argyrotofilament MTs, by Chen and Hil] and later by Bayley
termed “catastrophes” and transitions from the shrinkinget al. [8]. Taking a different tackusing probabilistic and
phase to the growing phase are termed “rescues.” The trarspectral analysjs Oddeet al. [9] have analyzed the experi-
sitions between the two phases occur rarely, but in a randomnentally observed distribution of elongation times and found
or stochastic manner. Thus there are four parameters thamall departures from the exponential distribution of the
characterize the observed behavior: the elongation antio-state model. Although the approach developed in this
shrinking rates . andv _, respectively, and the catastrophe paper is applicable to a multistate model, here we investigate
and rescue ratefs, andf_, respectively. Since MTs have a MT histories for the two-state model because simple exact
polar character, the rates observed at opposite ends are fiormulas relating statistical averages to rate parameters of the
two-state model can be obtained. These results are a useful
first approximation for more elaborate multistate models and

*FAX: (301)496-0825. have intrinsic interest in their own right. In addition, vitro
Electronic address: bicout@speck.niddk.nih.gov studies, which bear on the cap model, are summarized in
Electronic address: RIR@CU.NIH.GOV reviews[10-17. In most of these studies the rates of elon-
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gation and shortening as well as the lifetimes of the elongat- Il. LIFETIME DISTRIBUTIONS OF A MICROTUBULE
ing and shortening phases were measured as a function of Let P (x,t) andP_(x,t) be the probability density dis-

GTP-tubulin _concentration. The eI(_)ngation rate Is eXpeCt??ributions of finding at time a MT with the lengthx in state
to be proportional to the GTP-tubulin concentration. There IS, and—, respectively. These distributions satisfy the differ-

a critical valuchr of the GTP-'FubuIin concentratiof,5]  4ntial equations
such that for higher concentrations the average length of a
population of MTs increases proportional to the time, while P, IP

for concentrations less thay, the average length decreases = —v+—+ —f P, +f_P_, (2.13
s : . : at oX

with time. If nucleating sites for MT assembly are present in

the latter case, a stable population of MTs will be maintained

as long as the concentration of GTP tubulin is maintained. 9P — IP- +yf, P, —f_P_ (2.1b

Two related minimal two-state models of dynamic insta- at X
bility that depend upon the four parameters, v _, f. , and
f_ have been proposed and studied extensively. One, intro¥ith the initial condition
duced by Hill[13], is an example of a continuous time two-
state biased random walk in a discrete length spadpand P_(x,00=(1—a) 8(Xx—Xg), Pi(X,00=ad(Xx—Xo) .
the other, introduced by Dogterom and LeibJas], is the (2.19

continuous length space analog of the Hill model. In these . ) ) )
models,C<C,, (C>C,,) is equivalent, in terms of the four We treat the nupleatmg site as an absorblng_pomt and model
rate parameters, to.f_<v_f, (v.f_>v_f.). For the the complete disassembly of a MT by requiring that

casev f_<wv_f,, Hill [13] determined that the steady-
state fractional population of MTs in either of the two phases

is a decreasing exponential function of MT length. Verde I
et al. [16] reached the same conclusion for the Hill model 10 @ccount for passages of a MT through the shrinking

and Dogterom and Leibler obtained a similar requls]. phase, a counting_varia_bje(0<ys1) has been introduced
Rubin [17] for the Hill model and Bicout18] for the " Ed (2.1D. By insertingy, one can keep track of the

Dogterom-Leibler model calculated the mean first—passag@umber.Of different. transition Tis}ories rl:romht_hi. to _h
time to zero length of either an elongating or a shrinkingState' Since MTs disappear only from the shrinking phase,

MT. The results for the two different models are, for all "€ guantity of interest for a MT initially in the growing
practical purposes, identical. phase is the number of passes into the shrinking phase.
In either model, the governing equations correspond to a_For @ MT initially of lengthx, in either the growing or the

biased two-state random walk in which the drift decreaseShTinking phase, changes in length are governed by Egs.
(increases the length [14,19 for v, f <v f, (v, f_ 2.13 and (2.1b. The size-time history of a MT, i.e., all

>u _f,) [18]. Our principal interest in this paper is in cal- possible scenarios of transitions between the growing and

culating for the two-state model the average number of tran_§hrinking phases until complete disassembly, is encompassed

sitions for a MT of given length and phase before the MT!" these equations. For the classification of MT histories ac-

reaches zero length for the first time. In addition, we calcu£0rding to the number of passages into the shrinking phase,

late from the probability density of reaching zero length for' V& ar¢ _interested in the Iifgtime _distribution ofaMT, ie, the
the first time at timet the probability density of MTs that probap|llty density per unit of tlme_ that the MT of length
have made transitions into the shrinking state at the time of X0>Q In _state+ or —~ cpm_pletely d!sas_semble_s to zero for
their disappearance. We will use the Dogterom-LeibIerthe first time att. This lifetime distribution is given by the

model in our calculations and merely note that the results adux Ufpf(ovt) of MTs_reaching the nuc]eating site..A.s,
not differ significantly from those obtained for the Hill noted in Sec. |, two regimes of MT behavior can be distin-

model. In Sec. Il we outline a method for counting transi-9uished depending upon whether the rate constants satisfy

tions between states in the Dogterom-Leibler model. Thdh€ condition v, f_<v_f. (drift decreases lengthor
method, which generalizes to the continuum a technique fof +f->v-f+ (drift increases length An equivalent repre-
classifying discrete lattice random walk configurations ac-Sentation of these inequalities can be formed from the &atio
cording to the number of visits of each configuration to a°f the average growth step length. /f, to the average
selected set of lattice sit§80,21], consists in introducing a Shrinking step lengtl _ /f_ defined as
counting variable in the evolution equations. Then we calcu-
late the lifetime distribution of a MT of given length and _vafo

. . . - €= . (2.3
phase as a function of the counting variable. These distribu- v_f,
tions are then generating functions in the counting variable
that contain information about all transition histories of aWhene<1, all MTs eventually shrink to zero, while far
MT. In Sec. Il we exploit these generating functions to cal->1, the fraction of MTs that shrink to zero is less than one.
culate the probability densities of MT phase changes beforén this case the fluw _P_(0t) is proportional to the prob-
complete disassembly, the average number of phase changasijlity density distribution of MT lifetimes conditioned on
and fluctuations about the average. The relation betweereaching the nucleating site. Although the MT history of this
these quantities and the mean lifetime of a MT before disapfraction can be studied, the remainder of this paper will deal
pearance is established in Sec. IV. Finally, a summary obnly with the regimes<1 in which MTs have a steady-state
results is given in Sec. V. length[13,15,18 given by

P.(x,t)=0 if x=0. (2.2
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Q. (x) is the probability that a MT initially ak in the grow-
ing (+) or shrinking(—) phase disappears to the nucleating
site after having passed exactiytimes into the shrinking

In this latter case, all MTs will shrink to zero fast enough sostate. If the MT starts in the shrinking state and disappears

that the lifetime probability distribution is normaliz¢@2]

fxv,P,(O,t) dt=1. (2.5
0

Denoting by F, (t|xo;y) and F_(t|xq;y) the respective
probability density distributions of MT lifetimes starting at
Xo>0 in states+ (i.e., «=1) and— (i.e., «a=0), we then
have

F.(t|xg;y)=v_P_(0t) for (2.69

(2.6b

a=1,

F_(t|xq;y)=v_P_(0t) for a=0.

In our calculations, we only need the Laplace transforms

of F . (t|Xo:;y) andF _(t|xo;y) and in the remaining sections
of the paper we will omit the subscript zero on The
Laplace transform solution of Eq$2.13 and (2.1b with
boundary condition(2.2) is given in Appendix A. It follows
from the Laplace transform expressionwfP _(0,t) given
in Eq. (A8) that

F_(s|xy)=e sy x

(2.79

st+f_—v_\(s)y)

e Msy)x
yf_

Fi(slxy)=

=g(s,y) F_(slxy) , 2.7
where\(s,y) is given by

[vif_—v_f +(v,y—v_)s]

2v,v_
g

N s(s+f,+f )+(1—-y)f, f_

ViU

A(sy)=
[v f_—v_f,+(vi—v_)s]]?
2v,v_

1/2
) . (2.9

Note that by settingg=1, Egs.(2.7b and(2.79 reduce to
the expressions previously obtained by Bicpl@].

[ll. STATISTICS OF TRANSITION HISTORIES

By inserting the counting variablgin the MT evolution
equation(2.1b), F, (s|x;y) andF_(s|x;y) become generat-
ing functions in the variablg that contain information about
the set of all possible transition histories of a MT.

A. Probability distribution of transits into the shrinking phase

Consider the expansion 6F, (s|x;y) andF_(s|x;y) in
powers ofy at s=0,

ﬁ:(le;y>=n§0 Qr(x)y". (3.0

without ever entering the growing phases0. It follows
from Eq. (3.1) that the sums oven of the probabilities
Q. (x) andQ, (x) are normalized to one sind%i(0|x;1)

=1 and the individual probabilities are given by the expres-
sion

Q5 (x)

:%& F.(0[xy) (32

ay"

y=0

For a MT initially in the — state, the probabilitie$), (x)
and(}; (x) obtained from Eq(2.73 are

f_
Qo(x)=exp[—v—x] , (3.38
Q,(x)= fx - 3.3b
1 0=\ g 5O X B3
Similarly, the probabilities 5 (x) andQ; (x) are
Qg (X)= e 3.4
O(X)_ 1+6 ex U_X ’ (a
N € 1+e| f_x f_
Q7 (x)= 1+ —exp — —X¢p,
(1+eﬁ € _ v_
(3.4b

where € is defined in Eq.(2.3). General expressions for
Q. (x) are given in Appendix B. Since<1, these prob-
abilities decrease as the numberof transitions into the
shrinking phase gets larger and, in addition, they fall off
exponentially on the scale of the average shrinking step
lengthv _ /f_.

On the other hand),, (0) is given by

2n
n

e" 1

+ —
Qn(o)—mcn, —

) , (89

C_
" n+1

wherec,, is the Catalan numbef . (0) is the probability
that a newly nucleated MT completely disassembles after
passages into the shrinking state. As can be seen from Table
I, depending one the new MT is most likely to disappear
after having made one phase change-—. This general
trend holds as well for any MT length. Indeed, whe# |

(the steady-state lengtland e=0.1, for example, the prob-
abilities of disappearance afk; (1)=0.813,0.151,0.029 and
0, (1)=0.895,0.090,0.005 fon=0,1,2. This supports the
experimental observation of catastrophe events in which the
length of a MT suddenly shrinks to zero in a single run.

B. Average number of transits into the shrinking phase and
fluctuations

Another quantity that is accessible and relevant to the life
history of a MT is the average number of transitions into the
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TABLE |. Probability of disappearance aftercycles of a newly 2 _ 2
nucleated MT for different values af (AN () —(An:.(0))
[(n:(x)) = (n.(0)]?

Q,(0) ) 5

B (AnZ(x)) ~2(n(0))*+2(n.(0))+1 (3.10a
n e=0.1 e=0.5 [<n_(x)>]2 <n,(X)> .
0 0.90909 0.6667
1 0.07510 0.1482 1+€®\ v_
2 0.01240 0.0658 =l1T=c/7x (3.10D
3 0.00257 0.0366
4 0.00059 0.0228 and
5 0.00015 0.0152 ,

2
(An<(0)) B 2—€ete (3.1

- _ _ [(n.(0))]> €(1-€)

shrinking state executed before disappearance. This average

number(n_(x)), which is a function of starting MT length Forx fixed the fluctuation in the number of cycles diverges at

X, can be easily obtained from e=1, as it would be expected for a symmetric one-
dimensional random walk with an absorbing boundary. The
standard deviation of the number of transitions is comparable

(3.6 to the average number of transitions for-v_/f_ and e

y=1 >1 or forx~1| ande close to one, both numbers diverging at

the threshold.

JF - (0|x;y)
ay

<ni<x>>=r§0 nQx(x)=

Differentiating Eq.(2.79 and (2.7b with respect toy and

settingy=1, we find IV. MEAN LIFETIMES

As an application of the above analysis, we calculate the
mean lifetime of a MT that has cycled exactitimes into
) fx 3.7) the shrinking phase. To proceed, we denote Hy(x)

v_ ' [7_(X)] the mean lifetime of a MT given that it was initially
in the growing[shrinking) phase with the lengtk. Using the
formalism developed by Rubifl7], these times can be ex-

where(n,(0)), the average number of passes through thepressed as

shrinking state experienced by a newly nucleated MT before

disappearance, is IF . (s|x;y)

()= ——

(n (X)) = (n(0))=(n_(x))= ( 1i c

s=0y=1

6 oo
(N (0)=7—. (3.9 =lim EO Qn(x) Ty (X)) y", (4.1
Y*)ln:

+ - - - .
This shows tha{n_ (0)) is smaller than, equal to, or greater wherer, (x) [7, (x)] is the mean lifetime of a MT that has

transitedn times from+ to — when starting in thet [—]

than one fore smaller than, equal to, or greater th&nre- . . +
spectively, consistent with the data of Table I. For examplef)tatg' I_t 'rgTed'attﬁly fc:ll?_ws from Edd.1) that 7; (x) can

(n,(0))=0.11,1,19 fore=0.1,0.5, 0.95. € derived from the refation
Another informative quantity for the MT dynamics is the Nt 1e _
variance of the number of transitions into the shrinking state QO (%) 72 (x) = — 14 F.(s|x;y) 4.2
(An%(x))=(n%(x))—(n.(x))2. This can be obtained by n n n! Isay" oo
using the relation ST
Substituting Eqs(2.79 and(2.7b in Eqg. (4.2 and then us-
. ing Egs.(3.33, (3.3b), (3.43, and(3.4b), we have(see Ap-
. pendix Q
([n=(01%)=(n=(0)= 2, n(n=1) Q7 (%)

~ ()=
_PE(0xy) 0=y (433

ay? o1

T (X) =170 (X) + (4.3b

Kit+tr_'

Combining this with Eq(3.7), one can show that the fluc- . B
tuation in the number of cycles is given by 7o (X)=71(X) , (4.309
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. . 1+e\ f_x]1 times. Therefore, all remarks made about the number of
71 (X)= 79 (X) + Py 1+|1+ > phase changes apply as well to the MT lifetime.
(4.30
V. SUMMARY

in which the ratesc.. defined as The evolution equations describing the dynamic behavior

v_f, v, f_ of MTs are an example of a biased two-state random walk
(4.4  with an absorbing boundary. Consequently, in the interesting
case where the bias, or drift, is directed toward zero length

can be regarded as the apparent catastrophe and rescue ra?b%:' the location of the absorbing boundaryTs have a

It appears thatr, (x) consists of two contributions: first a dggg It'geg{g:s?fif%rigcigfgrrztr'%rc‘)'n?zvgeﬂgr;%gl%grgirr?c?gure
ballistic termx/v _ that accounts for shrinking propagation ' 9

without any phase changes, and second a term that contaii‘{lée'r histories, we have introduced a counting variapie

all information on cycle events and represents the diffusive e MT evolu.tlon equa_t|_or(2.;b). '_I'hese equations encom-
aspect of MT evolution. Note in addition that &t 0 only pass all possible transition histories of a MT before its dis-

the “diffusive” contribution is physically relevant: appearance. With the variahje one can cla_ssﬁy MT h'$t°'.
ries according to the number of transits into the shrinking

on+1 phase prior to absorption. The solution of the generalized
m (0)= . (4.5 evolution equations can then be regarded as a generating
Ketu function for quantities such &g the probability of transiting
exactly n times into the shrinking phase before absorption

resulting expressions with respect $p and taking thes O, (x) in Egs.(3.2, (B1), and(B6); (ii) the mean number of

—0 limit, we find that the mean lifetimes of a MT are given ftransits into the shrinkirlg phase befofe gbsorpﬂo@(x)}
by [17,18 in Egs. (3.6)—(3.8); and (iii) the mean lifetime of MTs that

have undergone exactly transits before disappearance
(14(x))—(7,(0)) m,(x) in Egs. (4.1), (C3), and (C4). All of these can be
computed directly from the time recording of a single MT
f_x (4.69 length. Indeed, the time evolution of a MT length exhibits a
(1—e)v_ ' sawtooth profile where peaks are formed by the alternation
of growing and shrinking phases. The number of peaks is
1 1 identically equal to the numberof times the MT enters the
= (E + E) (n_(x)) , shrinking phase, i.e., the number of times the MT undergoes
(4.6h  catastrophic events. Thereforg.(x)) and Q. (x) can be
obtained by simply counting and binning the number of
wheref;1+ f~1 is the typical duration of a cycle of succes- peaks before complete disassembly of the MT and averaging
sive phase changes afd_(x)), given in EQ.(3.7), is the  over many realizations and, (x) represents the average
average number of transitions into the shrinking state exelapsed time taken for the MT to collapse to zero length after
ecuted by a MT before complete disassembly to the nucleakaving entered the shrinking phaseimes.

Ki= K_=
vytu_’ vitu_

Settingy=1 in Egs.(2.79 and(2.7b), differentiating the

1
[

1
=(r-00)=F+

ing site. The mean lifetime for a newly nucleated MT is All the intimate details of MT historie€), (x), (n..(x)),
and 7, (x) discussed in previous sections depend on the ini-
<T+(O)>=( € i: (n4(0)) . (4.7) ftial Iengthx of the _MT. However, in application_s one i_s_
l-€/k_ K— interested in properties of the system prepared with an initial

o _ _ o distribution of MT lengths that coincides with the steady-
Similarly, denoting the variance of the mean lifetimes bystate distribution. Indeed, it has been shd8,15,18 that
(A2 (x)=(72 () —(7-(x))? one can also relate the fluc- for e< 1, there is a steady-state average lefigtp (2.4)] for

tuations of the mean lifetimes to the fluctuations in the num+Ts. That is, in an ensemble of MTs at steady state, if MTs

ber of phase changes given in £g.10 as are renucleated when they reach zero length, the appropriate
boundary condition for the evolution equatiof&1g and
(AT (x))—(AT4(0)) (2.1b is v, P.(0t)=v_P_(0t). Under the above condi-
[(74(X)) — (7 (0))]2 tions, it can be verified by direct substitution that the time-
* * independent or steady-state solutions of E(&s1a and
(A Tz_(x)> 2(1+e)? v_ (2.1b have the exponential forms
= = — 4.8
[(rONE (19 Tx (489 ) R
) pe[{X): U++U, I ]
1+ | [(n_(x))]* b= vy e
(48b) € U++U7 |

Equationg4.6b and(4.8b establish the one to one relation- In such an ensemble, all MT lengthsand states+ are
ship between the statistics of phase changes and that of lifgresent with the statistical Weigmgf“q(x) andpe(x). These
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weights can be used to calculate the ensemble average of ACKNOWLEDGMENT
Q. (x), (n.(x)), and 7, (x). For illustration, we just give
the ensemble average of the number of transits into the
shrinking phase before disappearance

We thank Attila Szabo for valuable discussions.

APPENDIX A: DERIVATION OF THE EXPRESSION OF

P_(X,S)
(Meq= fo (N4 (X)) PadX) dX Defining the Laplace Fourier transform as
+ fo<nf(x)> Ped X) dX fg(k,s):f dxf dt e stp (x,t) ,
0 0
€ 1 v_ £ 2 % s
1€ 1—6+v++v_ (52 :fo dte>P.(kt),
and the ensemble average of the lifetime of a MT before :JO dx P (x,s) , (A1)

complete disassembly

o N Egs.(2.139 and(2.1b can be transformed into
<T>eq: fo <T+(X)> peq(x) dx

(s+f,—ikv )P, — f_P_=aeko,

" fm<n<x)>p;q<x>dx
i yf, B, — (s+f_+iko_)P (A2)

1
e Mt ) 69 ——(1-a)e*o+y P (0s),

It foIIow_s that the average lifetime is equal to the total time; \which we have used the initial condition in EQ.10, the
of growing and shrinking phases times the average number . L2 B he f h
of transitions, plus a noncycling contribution that is the en-2PSorbing boundary conditidh. (0.s) =0, and the fact that

semble averaged lifetime of newly nucleated MTs havingP-(=,t)=0. For instanceP_(k,s) can be obtained from
transited only once into the shrinking phase to zero length.Eq. (A2) as

s+f . —ikv, a %o
A yf —(1—a)e*o+y P _(0s
B (kis)= + _ ( ) (0.5)
s+f,—ikv, —f_
yf, —(s+f_+ikv_)
(s+fi—ikv )u_P_(05) [(1-a)(s+f, —ikv,)+ayf,] o A3)
 vyv_ (ik=Ny) (ik+Xy) viv_ (Ik=Nqp) (IkK+X5) e
|
where the rootsa.; and\, are given by for real s>0. Moreover, in our case of interest, f_
\ —v_f, <0, we thus have\;>0 and\,=0. Let us invert
Hoz [o.f —o fi+(w mv)s] the Fourier transform oP_(k,s),
)\2 2()+l)_
[v f_—v_f,+(vi—v_)s]]? . 1 (> =
+ - —ikx
( 200 P_(x,s) 5 ﬂoe P_(k,s)dk . (A5)
s(s+f,+f )+(1—y)f f_|1?
+ ViU - (A4 In evaluating the transform by contour integration, closure of
the contour containing the term X is clockwise around
In the argument of the square root bf ,, the counting —i\y, while for the term containinge’* ™o closure is

variable is assumed to be less than one, although ultimatelflockwise around—i\A; for x>X, and counterclockwise
the limit y—1 is taken. Therefore, that argument is positivearoundi\ , for x<x,. The result is
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+_U+)\1)U—|5—(0-3)
— (At Np)

—\1X

[(1 a)(stfi)tayf,]
viv_ (Nt Ay
(1-a)\,
Uf()\l‘l‘)\z)

—)\2()(0_)()

H(xo—x) e *2X0™%),

X<Xg, (A6a)

oA P_(08)
~ (A1)
+[(1 a)(stf,)+ayf,]
v Uv_ (Nt Ny)
(1=a)\g
_v_()\1+)\2)

. s+f,—
P,(x,s)=—( . ~hax

—N1(X" Xp)

H(x—Xo) e M~ %0,

X=Xo, (A6b)

whereH(x) is the Heaviside step function defined ld$x)

=1 for x>0 andH(x)=0 for x<<0. The expression for

P.(x,s) can as well be derived using the same method.
We now focus on the case<xg. Setx=0 in Eq. (A6a)

and solve the resulting equation fBr_(0,s). Using the re-
lation
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probability ofn transitions for a MT initially in the shrinking
phase is, fon=1,
f7 ]
- —X
U_

e" p[
(1+¢€)?" X
(2n—k—1)!

X & T k—D) (n—K)!

Q,(x)=

1+ €\ f_x]K

€

U_

(B1)

The structure of Eq(2.70 suggests expressing, (x) in
terms of ), (x). We have

Qo= LS (” #g(0y) " KE_(0lx;y)
n n! &6 L k ﬁyk aynfk y=o
" Q, (%) | d4g(0y)
=2 ";I‘ k’ (B2)
=0 H ay y:0

The remaining derivative can be easily evaluated to give
n

Qq (%) 0 (0) Q4 (x) (B3)

whereQ), (0) is given in Eq(3.5). However, it is possible to
work out a general formula a2, (x). Substitute Eqs(B1)
and (3.5 into Eq.(B3) and obtain

yf, _stf_—uv_ X, A7 N |
S+f++v+)\2_ f_ ! ( ) Q+(X):6—ex _f__X ﬂ
n (1+¢)2n+t v_ n'(n+1)!
we finally obtain
n! (2K)!
. +f_—v_A\ +
v_P_(08)= a(s vi v-Az) + (1—0()} e Mo g’o kl(k+1)!(n—k)!
(A8) 2 (2n—2k—i—1)! [[1+€ f_xi]
=1 (i—D!'(n—k—i)! _ '
APPENDIX B: GENERAL EXPRESSIONS FOR Q7 (x) a ) € v
B4
By differentiating Eq.(2.7@ n times with respect ty and (B4
using Eq.(2.3 in the resulting expressions, we find that the Next, using in this expression the identity
_ (2k)! (2n—2k—i-1)! _ (2n)! Lo (kt1)(2n-k)
Z‘ kl(k+21)!'(n— k)'z‘ (i—1)!(n=k—i)! n!'(n+1)! g‘ I(n+ 1)k (n— k)'Z ' (BS)

we finally find

€e" f_
(1+6)2n+1ex U__X

" (k+1)(2n—k)!
Z (n+1)!'k! (n—k)!

Q)=

1+ €\ f_x]K

€

U_

(B6)

Note that similar expressions, i.e., E¢B1) and(B6) for the
number of phase changes, were also obtained by[HHd]
using a different method.

APPENDIX C: GENERAL EXPRESSIONS FOR 77 (x)

Differentiating Eq.(2.79 once with respect t® and n
times with respect tg and settings=y=0, we have
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_ _ X
Qn(x)rn(x)=zﬂn(x)+ T
—f_x |" f_x
(1+e)v_ ex vl
"il(n+k)(n+k—1)! 1+e)f_x —k
szo n!k!(n—k—l)! € [
(Cy
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Using this relation and EqB1) in Eq. (C1), we find

B X .

T (X)= — P k21(2k—1)
k! Qp () —f_x "k
ntQ,(x)|L(1+e)v- €3

On the other hand, one can show by recurrence, for example,

that forZ#0

L (n+k) (n+k—1)!
kl(n—k—1)!

k=0

(k+i—1)!
0 il(k—=i—1)! z

kzl — 1)tk (2Kk— 1)2

n K (2k—i—1)!
n+k
2, (V"D Ty 2

Z'7k . (C2

Similarly, the differentiation of Eq(2.70 once with respect
to s and n times with respect toy and identifying factors
related to the shrinking phase, one can expreséx) in
terms of r,, (x) and (), (x) as

Q) (0) (%)
Q7 (x)

T (X)= >,

> [0+ 7 ()]

(C4
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